On Classification of Extendability of Cayley Graphs on Dicyclic Groups
نویسندگان
چکیده
Let G be a group and S a subset of G such that the identity element 1 < S and x−1 ∈ S for each x ∈ S . The Cayley graph X(G; S ) on a group G has the elements of G as its vertices and edges joining g and gs for all g ∈ G and s ∈ S . A graph is said to be k-extendable if it contains k independent edges and any k independent edges can be extended to a perfect matching. In this paper, we prove that every connected Cayley graph on dicyclic groups is 2-extendable and also investigate the 3-extendability in X(G; S ).
منابع مشابه
Automorphisms of Cayley graphs on generalised dicyclic groups
A graph is called a GRR if its automorphism group acts regularly on its vertex-set. Such a graph is necessarily a Cayley graph. Godsil has shown that there are only two infinite families of finite groups that do not admit GRRs: abelian groups and generalised dicyclic groups [4]. Indeed, any Cayley graph on such a group admits specific additional graph automorphisms that depend only on the group...
متن کاملA Classification of Prime-valent Regular Cayley Maps on Abelian, Dihedral and Dicyclic Groups
A Cayley map is a 2-cell embedding of a Cayley graph into an orientable surface with the same local orientation induced by a cyclic permutation of generators at each vertex. In this paper, we provide classifications of prime-valent regular Cayley maps on abelian groups, dihedral groups and dicyclic groups. Consequently, we show that all prime-valent regular Cayley maps on dihedral groups are ba...
متن کاملNORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS
Abstract : We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.
متن کاملA Classification of Prime-valent Regular Cayley Maps on Some Groups
A Cayley map is a 2-cell embedding of a Cayley graph into an orientable surface with the same local orientation induced by a cyclic permutation of generators at each vertex. In this paper, we provide classifications of prime-valent regular Cayley maps on abelian groups, dihedral groups and dicyclic groups. Consequently, we show that all prime-valent regular Cayley maps on dihedral groups are ba...
متن کاملOn Groups all of whose Undirected Cayley Graphs of Bounded Valency are Integral
A finite group G is called Cayley integral if all undirected Cayley graphs over G are integral, i.e., all eigenvalues of the graphs are integers. The Cayley integral groups have been determined by Kloster and Sander in the abelian case, and by Abdollahi and Jazaeri, and independently by Ahmady, Bell and Mohar in the nonabelian case. In this paper we generalize this class of groups by introducin...
متن کامل